APPROVAL & IMPLEMENTATION

Annex D
Radiological Protection

City of Bryan Fire Chief

City of College Station Fire Chief

South Brazos County Fire Chief

Brazos County District 2 Fire Chief

Brazos County Precinct 3 Fire Chief

Brazos County Precinct 4 Fire Chief

Texas A&M University EMC

Date

Date

Date

Date

Date

Date
<table>
<thead>
<tr>
<th>CHANGE #</th>
<th>DATE OF CHANGE</th>
<th>DESCRIPTION</th>
<th>CHANGED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX D
RADIOLOGICAL PROTECTION

I. AUTHORITY

A. Refer to Section I of the basic plan for general authorities.

II. PURPOSE

The purpose of this annex is to define organizational concepts and procedures, establish the local organization, and to assign responsibilities for an effective operational radiological protection program (RPP) for preparation and response in the event of a radiological emergency affecting this jurisdiction. This will allow our jurisdiction to provide a coordinated response to emergencies involving radioactive materials and for determination and implementation of local measures to protect life, property, and the environment during the course of the event.

III. EXPLANATION OF TERMS

AHJ Authority Having Jurisdiction
DOE (US) Department of Energy
DHS Department of Homeland Security
DPS Department of Public Safety
DSHS Department of State Health Services
EOC Emergency Operations Center
EMC Emergency Management Coordinator
FEMA Federal Emergency Management Agency
OSHA Occupational Safety and Health Administration
IC Incident Commander
ICP Incident Command Post
ICS Incident Command System
NIMS National Incident Management System
NRC Nuclear Regulatory Commission
RCP Radiation Control Program
RO Radiological Officer
RPP Radiation Protection Program
SMRAP The Southern Mutual Radiation Assistance Plan
SOP Standard Operating Procedures
TDEM Texas Division of Emergency Management
TLETS Texas Law Enforcement Telecommunications System
IV. SITUATION & ASSUMPTIONS

A. Situation

1. General.

a. See the general situation statement and hazard summary in Section IV.A of the Basic Plan.

b. Radioactive materials are hazardous materials that receive special coverage in state and federal laws and regulations covering such materials. However, radiological materials are also subject to a number of specific state and federal laws and regulations that control the handling and use of such materials, and plans that establish unique state and federal procedures for handling incidents involving them. In addition, the state and federal agencies that provide advice and assistance to local governments during radiological incidents differ from those that provide advice and assistance during most other hazardous materials incidents.

c. Except for radiological incidents involving federal facilities or federally owned nuclear materials, the State or local government has the responsibility for taking required emergency response actions. Response from this jurisdiction will be in compliance with the National Incident Management System (NIMS) operating principles and protocols, and will constitute general guidance for all responders to the radiological incident. Support may be requested from federal agencies pursuant to the National Response Framework (NRF). The Department of Homeland Security (DHS) has overall responsibility of all actual and potential incident of national significance and accidents or incidents involving nuclear or radioactive materials that may or may not rise to the level on an incident of national significance. Various federal coordinating agencies will lead the response to incidents of lesser severity by coordinating federal radiological monitoring assistance to state and local governments.

d. The Department of State Health Services, Radiation Control Program (DSHS/RCP), as the state radiation control agency, has primary responsibility for the state radiological protection program. DSHS/RCP also provides statewide training for ROs and radiological monitors.

e. The federal agency responsible for accidents at nuclear facilities licensed by the State of Texas or incidents involving shipments of radioactive materials licensed by the State is the Nuclear Regulatory Commission (NRC). The US Department of Energy (DOE) and Department of Defense (DOD) have the lead federal role in incidents at their facilities or accidents involving their shipments. Each of these federal agencies in addition to the United States Coast Guard (USCG), the Environmental Protection Agency (EPA), and the National Aeronautics and Space Administration (NASA) may serve as a coordinating agency for DHS.

f. Additional external resources may be available and requested by the State of Texas in accordance with the Southern Mutual Radiation Assistance Plan (SMRAP).
2. Radiological Hazards.

 a. This jurisdiction is susceptible to accidents involving radioactive materials at fixed sites and in transport. Texas A&M University, hospitals and medical facilities use a wide range of radioactive sources in nuclear medicine, as well as, in research and development programs. Radioactive sources are used to x-ray pipe welds, in well logging, and for many other common industrial and business uses. These sources can be extremely hazardous (life threatening) when removed from their containers, either intentionally or by accident. A variety of radioactive materials are transported on our highways and rail systems, sometimes in unmarked vehicles. Additionally, radioactive materials may be present on some aircraft.

B. Assumptions

1. We may experience radiological emergency situations, which may threaten public health and safety, private or public property and/or the environment, which will necessitate the implementation of protective actions for the public at risk.

2. A nuclear attack against the United States is considered highly unlikely. The deliberate release of radioactive materials by criminals or terrorists in the local area is possible, but considered unlikely.

3. Proper development and execution of a RPP can significantly reduce the number of casualties that could result from a radiological accident. A combination of trained local radiological personnel, operational detection equipment, and containment/decontamination equipment and facilities should be available to detect, assess the threat posed by, and contain radiological accidents.

4. We must be prepared to carry out the initial emergency response on an independent basis. If our resources alone are inadequate to cope with a radiological incident we may request state assistance through our Disaster District. The DSHS/RCP, as the state radiation control agency, will provide advice and assistance to local personnel in responding to an incident involving an actual or suspected radiological release.

5. Local emergency operations, including the use of mutual aid resources, will be directed by local officials, except in those situations where state or federal law requires that a state or federal agency exercise lead responsibility or where local responders lack the necessary expertise and/or equipment to cope with the incident and agree to permit those with the expertise to take charge.

6. The State may request supplemental emergency assistance from other states or from the federal government when local and state resources are insufficient to deal with the emergency.
V. CONCEPT OF OPERATIONS

A. General

1. A basic local radiation protection program (RPP) consists of the Community Emergency Operations Center (EOC) and an incident response capability that includes one or more Radiological Officers (ROs) to manage the program and trained radiological monitors equipped with appropriate radiation detection and communication equipment.

2. To conduct an effective RPP, we will:
 a. Maintain information on radiological monitoring instruments by type, number, location, and owner. We own and maintain specialized radiological detection equipment. We possess radiation detection equipment on loan from the State. See Appendix 1 for a list of radiological monitoring resources within our jurisdiction.
 b. Establish procedures for initial emergency response to radiological accidents. See the Radiological Incident Response Checklist in Appendix 2.
 c. Establish a radiological incident reporting system. See Appendix 3.
 d. Appoint personnel and provide training to local emergency responders, emergency management personnel, ROs, and radiological monitors. See Appendix 4.
 e. Establish procedures for decontamination and recovery operations.

B. Radiological Accidents

1. Discovery. Radiological accidents may be discovered by the public, by businesses that use or transport such materials, or by local responders who are summoned to an accident site. Local personnel are likely to be first emergency responders on the scene of a radiological accident. The first local emergency responder at the scene will take charge, initiating the incident command system (ICS), and serve as the Incident Commander until relieved by a more senior or more qualified individual.

2. Local Notification. The Incident Commander will provide information on the incident to local officials through Dispatch using the Hazardous Materials Incident Report provided in Tab A to Appendix 3. The Incident Commander shall make an initial assessment of the situation, to include an estimate of the likelihood of a release of radiological materials. If it appears that radiological materials have been released into the environment or such a release appears likely, the EOC will be activated to support the incident response.

3. Response Actions. The Incident Commander should identify response resources required and direct the on-scene response to contain or prevent spread of contamination at the incident site. The initial response should be accomplished in accordance with established hazardous materials response criteria and the general checklist in Appendix 2. At least one trained RO or radiological monitor should participate in the response to a known or suspected radiological incident.

4. Protective Actions.
a. Short Term.

1) If it appears that a release of radiological materials has occurred or is possible, the Incident Commander is responsible for determining and implementing appropriate protective actions for the public in the immediate area of the incident. The Incident Commander is also responsible for advising personnel responding to the incident of potential hazards and determining requirements for personal protective equipment (PPE). Responders who lack appropriate hazardous materials training and appropriate PPE should not be committed to radiological incidents.

2) If it appears that a radiological release has or may affect areas beyond the incident site, the incident commander should coordinate with the EOC to agree upon a division of responsibilities for warning the public, making required notifications, implementing protective actions for the public in areas beyond the incident site, and obtaining additional resources and technical assistance.

3) Suitable initial public protective actions for a radiological incident may include evacuation and/or sheltering in place. Appendix 4 to Annex Q, Hazardous Materials & Oil Spill Response provides additional information on selecting public protective measures.

b. Long-term Protective Measures. DSHS/RCP will normally conduct a detailed incident assessment, identify affected areas through radiological monitoring, recommend follow-on protective measures to protect public health, and oversee recovery operations. Long-term protective measures may be implemented by DSHS or other state regulatory agencies and may include controls on the movement and use of livestock, foodstuffs, milk, and feed from contaminated areas and on the use of drinking or irrigation water from contaminated sources.

5. State and Federal Notifications. Dispatch or the EOC, if activated, shall be responsible for making required emergency notifications to state and federal agencies. Radiological releases should be reported to:

a. The local Department of Public Safety (DPS) office in, at 979-776-3102, which will relay information to the Disaster District Committee (DDC) and the Texas Division of Emergency Management.

b. The DSHS/RCP at 512-458-7460 (24-hour).

c. The State Environmental Hotline at 800-832-8224.

d. The National Response Center at 800-424-8802.

e. If incident involves a deliberate release of radiological materials, the FBI office in Bryan at 979-731-0600.

See Appendix 3, Texas Radiological Incident Reporting System, and Tab A to Appendix 3, Hazardous Materials Incident Report, for additional information.

6. State & Federal Assistance. The EOC is responsible for coordinating with the DSHS/RCP to obtain technical advice and assistance regarding radiological issues. The DSHS/RCP staff in Austin has the capability to provide advice by telephone to the EOC or directly to the Incident Commander until DSHS/RCP personnel arrive on the
scene. The DSHS/RCP may formulate requests for the Governor for additional radiological monitoring and assessment assistance from the federal government or from other states, if required. The County Judge or Mayors may request other types of state assistance through the Disaster District Committee Chairperson.

7. Situation Updates. The Incident Commander shall provide situation updates to the EOC; the EOC should prepare and transmit situation reports to the Disaster District. See Annex N for guidance on situation reporting.

8. Monitoring of Emergency Workers. Exposure records and medical follow-up will be provided for responders who have entered contaminated areas.

9. US Government Nuclear Materials. In the event of a radiological accident involving nuclear weapons, special nuclear material (SNM), or classified components, the federal agency, which owns that material may declare a National Defense Area (NDA) or National Security Area (NSA) around the site and take exclusive control within that area. NDAs and NSAs are established to safeguard classified information or restricted data, equipment, or material.

C. Deliberate Acts

The deliberate release of radioactive materials is a crime under a number of state and federal laws. Any incident of this type must be promptly reported to local and state law enforcement agencies. The Federal Bureau of Investigation (FBI) has lead responsibility for criminal investigations of terrorist acts or terrorist threats involving weapons of mass destruction (WMD), including improvised radiological dispersion devices; the Department of Public Safety (DPS) is the lead state agency. The DHS is responsible for overall coordination of all actual and potential Incidents of National Significance and accidents or incidents involving radiological materials that may or may not rise to the level of an incident of national significance; TDEM is the lead state agency. If a release of radiation is believed to be an act of terrorism, we will ensure the incident is reported to both to the Texas Department of Public Safety (DPS) and the FBI. More information on dealing with terrorist events is provided in Annex V, Terrorist incident Response.

D. Activities by Phases of Emergency Management

1. Prevention
 a. Maintain an effective public warning system.
 b. Establish/maintain a hazardous cargo route.

2. Preparedness
 a. Establish a RPP system.
 b. Select and train RPP personnel.
c. Ensure responders have data available on local facilities that are licensed to use, store, or transport radiological materials. This information may be obtained from the DSHS/RCP.

d. Ensure radiation detection instruments are available and operational.

e. Educate the public about radiological hazards and protective actions.

3. Response

a. Activate the RPP system

b. Respond in accordance with the guidelines in Appendix 2.

c. Provide information and instructions to the public.

4. Recovery

a. Ensure radiation source material is removed and ensure access to contaminated areas is controlled until they are cleaned up. Cleanup will normally be performed by a contractor supervised by state or federal agencies and paid for by the responsible party, if one can be located.

b. Work with state and federal agencies to assess damage, if any.

c. Work with the DSHS/RCP to continue area radiation monitoring, if required.

d. Work with the DSHS/RCP to determine the cause of the incident and determine liability.

e. Keep the public informed about the status of the incident.

VI. ORGANIZATION & ASSIGNMENT OF RESPONSIBILITIES

A. Organization

1. The Radiological Officer (RO) is in charge of the RPP on a day-to-day basis. Once a radiological accident occurs, responsibility for managing and directing the response is assigned to the Incident Commander and responsibility for coordinating external support is assigned to the EOC staff.

2. Effective response to a radiological incident requires a coordinated response by local departments, agencies, and officials, together with representatives of the facility or company responsible for the incident, augmented, in certain circumstances, by state and federal agencies with responsibilities for radiological incidents. Technical assistance for a radiological incident may be provided by the facility, by state and federal agencies, or by industry. See paragraph V.B.6, this annex for more information on state and federal assistance.
B. Assignment of Responsibilities

1. The Fire Chiefs will designate one or more Radiological Officers to coordinate all radiological protection program activities.

2. The Incident Commander (IC) will:
 a. Manage emergency response resources and operations at the incident site to control the incident.
 b. Determine and implement protective actions for emergency responders and the public in the vicinity of the incident site.

3. Fire Departments(s) will:
 a. Provide personnel and equipment to contain or control radiological incidents.
 b. Carry out initial radiological monitoring needed to assess the situation and determine protective actions. State or federal agencies may provide follow-on radiological monitoring assistance.
 c. Carry out initial decontamination where needed. Large-scale decontamination, if needed, may be coordinated by state or federal agencies.
 d. Assist in evacuation, if necessary.

4. The Radiological Officer will:
 a. In the first quarter of each year, obtain a current listing of local licensed users of radiological materials from DSHS/RCP, maintain a copy of that list, and provide copies to emergency response elements for use in operational planning.
 b. Ensure a sufficient number of radiological detection instruments are in-place and operational.
 c. Ensure selected emergency responders are provided training in radiological monitoring.
 d. Schedule and conduct an annual review of this annex and coordinate update of the annex, if needed.

5. Law Enforcement will:
 a. Restrict access to incident sites and contaminated areas to protect public health and safety.
 b. Organize and conduct evacuations and provide traffic control as needed, if necessary.
c. Assist in warning the public, as necessary.

d. If the release of radiation appears deliberate, control the scene, apprehend suspects, conduct an investigation, and if, the incident appears to be terrorism-related, ensure DPS and the FBI are advised.

6. EMS will:
 a. Provide medical care and transportation for casualties.

b. Alert hospitals of the potential for contaminated victims.

7. Hospital(s) will:
 a. Provide medical care for casualties as needed.

b. Be prepared to decontaminate contaminated patients.

8. Other Departments & Agencies will:
 a. Provide personnel, equipment, and supplies requested to support emergency operations.

b. Provide technical assistance to the Incident Commander and the EOC upon request.

c. In accordance with established procedures, provide personnel to staff the Incident Command Post (ICP) or EOC when activated.

VII. DIRECTION & CONTROL

A. Guidance. The County Judge and/or Mayors will establish local policies relating to radiological protection and may provide general guidance for emergency operations.

B. Program Management. The RO will carry out day-to-day management of the RPP.

C. Operational Direction. During radiological incidents, the IC will manage radiological response operations at the incident site. The IC and the EOC shall agree upon a division of responsibilities for specific tasks. Typically, the EOC will conduct support operations, including activating additional resources and requesting external resources, making required notifications and reports, coordinating large scale evacuations and area traffic control, disseminating emergency public information, and other tasks to sustain emergency operations.

D. Communications. Telephone, radio, teletype, e-mail, and/or facsimile will be used to transmit reports of radiological incidents, obtain technical assistance, exchange information, and provide direction and control.
Most radiological incidents typically occur without warning. Hence, developing a systematic set of increased readiness actions is difficult.

A. Level IV - Normal Conditions.

See the prevention and preparedness activities in Section V.D, Emergency Management Activities by Phase.

B. Level III - Increased Readiness. Increased Readiness may be appropriate if there is a greater than normal threat of a radiological incident. Initiating conditions may include a radioactive source missing in our region, notification that a significant radioactive shipment will be transiting our area, or a significant change in the Homeland Security Threat Level due to a radiological threat. Level 3 readiness actions may include:

1. Monitoring the situation.
2. Informing first responders of the situation.
3. Ensuring the hazardous materials response team is aware of the situation and can respond if necessary.

C. Level II - High Readiness. High Readiness may be appropriate if there is an increased risk of a radiological incident. Initiating conditions may include a significant radiological shipment transiting through our area, a radioactive source is missing in our jurisdiction, or notification of a significant change in the Homeland Security Threat Level due to a specific radiological threat. Level 2 readiness actions may include:

1. Monitoring the situation.
2. Alerting personnel for possible emergency duty and deploying personnel and equipment to investigate incidents.
3. Checking equipment and increasing short-term readiness if possible.
4. Issuing public warning and providing public information if necessary.

D. Level I - Maximum Readiness. Maximum readiness is appropriate when there is a significant possibility of a radiological release. Initiating conditions might include a lost radioactive source being located in the local area, activation of radiological alarms at a landfill screening point, an incident at a facility licensed to use radiological materials, or notification of a significant change in the Homeland Security Threat Level due to a specific radiological threat addressing this jurisdiction or facilities possessing radioactive materials. Level 1 readiness actions may include:

1. Investigating the situation and partially or fully activating the EOC to monitor it.
2. Placing first responders in alert status; placing off-duty personnel on standby.
3. Advising appropriate state and federal agencies.

4. Preparing to issue and issuing public warning if it becomes necessary.

IX. ADMINISTRATION & SUPPORT

A. Agreements & Contracts

Should our local resources prove to be inadequate during an emergency; requests will be made for assistance from mutual aid agreements, state and/or federal agencies, and industry in accordance with existing mutual-aid agreements and contracts.

B. Reports & Records

1. Situation Reports. If there has been an actual release of radioactive materials, the EOC should prepare and disseminate a periodic situation report to state and federal agencies, through the DDC, until the situation is resolved. It may be desirable to also disseminate this report to nearby jurisdictions and to those cities or counties that are providing mutual aid resources. See Annex N, Direction and Control, for the format of and instructions for this report.

2. Activity Logs. The ICP and the EOC shall maintain accurate logs recording key response activities; activities to be logged are outlined in Section IX of our Basic Plan.

3. Response & Recovery Expenses. As it may be possible to recover some expenses incurred in responding to a release of radiological materials from the responsible party, insurers, or the federal government, each department or agency shall maintain detailed records of labor costs, equipment usage, and supplies expended to respond to or recover from an actual radiological release.

4. Post-Incident Review. A post-incident critique shall be conducted in the aftermath of any incident that resulted in an actual release of radiological materials.

C. Maintenance of Radiological Equipment

1. All radiological monitoring devices will be maintained in accordance with the manual of instructions for those instruments.

2. State-owned instrument sets obtained from DSH/RCP are normally exchanged periodically by the DSHS/RCP so they can be serviced and calibrated. The RO will coordinate instrument exchanges, calibrations, and any out-of-cycle maintenance requirements for state-owned instruments with DSHS/RCP.

D. Training

Federal law requires that individuals, who respond to hazardous materials incidents, including radiological incidents, should be adequately trained and equipped for the tasks they will perform. Training is available through a combination of federal, state, and local sources; see Appendix 4.
X. PLAN DEVELOPMENT & MAINTENANCE

A. Development. The Fire Chiefs, with the assistance of the EMCs, are responsible for developing and maintaining this annex.

B. Maintenance. This annex will be reviewed annually and updated in accordance with the schedule outlined in Section X of the basic plan.

XI. REFERENCES

U.S. Department of Transportation and Transport, Emergency Response Guidebook.

APPENDICES:

Appendix 1 ... Radiological Instrument Inventory
Appendix 2 ... Radiological Incident Response Checklist
Appendix 3 ... Texas Radiological Incident Reporting System
 Tab A .. Hazardsous Materials Incident Report
Appendix 4 ... Radiological Response Training & Instruments
RADIOLOGICAL INSTRUMENT INVENTORY

<table>
<thead>
<tr>
<th>Type</th>
<th>#</th>
<th>Location</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluke Biomedical ASM 993</td>
<td>2</td>
<td>Brazos County Health Department</td>
<td>Brazos</td>
</tr>
<tr>
<td>Berkeley Nucleonics SAM 945-GN</td>
<td>1</td>
<td>Brazos County Health Department</td>
<td>Brazos</td>
</tr>
<tr>
<td>Ludlum 777-1</td>
<td>1</td>
<td>South Brazos County Fire Department</td>
<td>Brazos</td>
</tr>
<tr>
<td>Ludlum 777-1</td>
<td>1</td>
<td>Brazos County Precinct 4 Volunteer FD</td>
<td>Brazos</td>
</tr>
<tr>
<td>Ludlum 14C</td>
<td>2</td>
<td>Bryan Fire Department</td>
<td>Bryan</td>
</tr>
<tr>
<td>Bendix Dosimeter CD V-742</td>
<td>3</td>
<td>Bryan Fire Department</td>
<td>Bryan</td>
</tr>
<tr>
<td>Bendix Dosimeter Charger</td>
<td>1</td>
<td>Bryan Fire Department</td>
<td>Bryan</td>
</tr>
<tr>
<td>Victoreen CDV-715 (model 1A)</td>
<td>1</td>
<td>Bryan Fire Department</td>
<td>Bryan</td>
</tr>
<tr>
<td>Lionel CDV-700 (model 6B)</td>
<td>1</td>
<td>Bryan Fire Department</td>
<td>Bryan</td>
</tr>
<tr>
<td>AreaRAE</td>
<td>4</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Ludlum 2241-3</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Ludlum 44-9 (Pancake Probe)</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Ludlum 44-2 (Low Dose Gamma Scintillator)</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Ludlum 133-6 (High Dose Gamma Scintillator)</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Canberra - Ultra Radac</td>
<td>5</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Radition Alert - Monitor 4</td>
<td>2</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Eberline RO-2</td>
<td>2</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Anton Electronic Labs - CDV-715 (R/hr)</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Anton Electronic Labs - CDV-700 (mR/hr)</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Dosimeter - CDV-742</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Dosimeter - Arrow Tech 138</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>APD 2000</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Ludlum 14C - GM</td>
<td>1</td>
<td>College Station Fire Department</td>
<td>College Station</td>
</tr>
<tr>
<td>Tracerco T201 - Ion Chamber</td>
<td>2</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Tracerco T202-A-4 - GM</td>
<td>2</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Victoreen 451P - Ion Chamber</td>
<td>4</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Ludlum 9DP - Ion Chamber</td>
<td>1</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Ludlum ICS-4000 - Identifier</td>
<td>1</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Ludlum 2200 - Swipe Meter</td>
<td>3</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Ludlum 177 - Rem Ball (Neutron Detector)</td>
<td>1</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Tenbelac - Swipe Counter</td>
<td>1</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>HPGe Detector - Isotope Identifier</td>
<td>2</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>PIC's - 0-200 mR Range - Dosimeter</td>
<td>150</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>PIC's - 0-5 R Range - Dosimeter</td>
<td>50</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Ludlum model 53 - Contamination Monitor</td>
<td>2</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Canberra - Gas Flow hood foot monitor</td>
<td>1</td>
<td>Nuclear Science Center</td>
<td>TAMU</td>
</tr>
<tr>
<td>Bicron Micro rem - Ion Chamber</td>
<td>2</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Victoreen 451P - Ion Chamber</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Victoreen 450P - Ion Chamber</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 4901P - Hand foot monitor</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 3 - End window GM</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 1 - End window GM</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 12 - Nal Probe</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 3 - Nal Probe</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Ludlum 3 - GM Pancake Probe</td>
<td>3</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>PerkinElmer B3110 - Liquid scintillation counter</td>
<td>1</td>
<td>1111 Research Parkway</td>
<td>TAMU - EHS</td>
</tr>
<tr>
<td>Bicron Micro rem - Ion Chamber</td>
<td>1</td>
<td>TAMU Cyclotron</td>
<td>TAMU - EHS</td>
</tr>
</tbody>
</table>

Version: 4.0
Date: 03/06
<table>
<thead>
<tr>
<th>Instrument Description</th>
<th>Quantity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victoreen 451P - Ion Chamber</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
<tr>
<td>Ludlum 12 - NaI Probe</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
<tr>
<td>Ludlum 2 - End window GM</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
<tr>
<td>Ludlum 3 - GM Pancake Probe</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
<tr>
<td>Packard 2500 Tr - Liquid scintillation counter</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
<tr>
<td>Health Physics Instruments Rem 500 - Neutron Detector</td>
<td>1</td>
<td>TAMU Cyclotron</td>
</tr>
</tbody>
</table>

Appendix 1 to Annex D

TAMU - EHS
RADIOLOGICAL INCIDENT RESPONSE CHECKLIST

<table>
<thead>
<tr>
<th>Action Item</th>
<th>Assigned</th>
</tr>
</thead>
</table>
| 1. If the situation requires it, isolate the site and deny access.
 • Use emergency vehicles, barricades, barrier tape, etc. | |
| 2. Classify incident, provide basic situation information to dispatch, and identify response resources required. See Incident Classification page 3, this appendix.
 • Level I – Incident
 • Level II – Emergency
 • Level III – Disaster | |
<p>| 3. Record situation on a Hazardous Materials Incident Report (see Appendix 3, Tab A) and provide to Dispatch. | |
| 4. [Dispatch/Communications Center] should relay situation information to emergency responders, who should dispatch forces in accordance with their SOPs. If separate fire and law enforcement Dispatch Centers are used, the center receiving the initial report should pass it to the other dispatch center. | |
| 5. Determine extent of danger to responders and establish requirements for personal protective equipment (PPE) and specialized response equipment. See Response Personnel Safety in Annex Q, Appendix 4. | |
| 6. Ascertain extent of danger to general public; determine specific areas and special facilities (schools, hospitals, nursing homes, prisons, and other institutions), if any, at risk. | |
| 7. Develop initial action plan to contain and control the release of radiological material. | |
| 8. Determine appropriate protective actions for the public and special facilities. See Annex Q, Appendix 4. If evacuation is contemplated, see the General Evacuation Checklist in Annex E, Evacuation. | |
| 10. Warn special facilities, provide protective action recommendations and instructions, and determine requirements for assistance. Provide assistance requested. | |
| 11. If evacuation will be conducted, provide traffic control and be prepared to provide transportation to those who lack it. | |
| 12. If evacuation will be conducted, provide traffic control and be prepared to provide transportation to those who lack it. | |
| 13. Warn other communities that may be threatened by the radiological release. | |
| 14. If possibility exists of casualties that are contaminated with radiological material, ensure EMS units and hospitals are so advised. | |
| 15. If evacuation is recommended, staff and open temporary shelters for evacuees. See Annex C, Shelter and Mass Care. | |</p>
<table>
<thead>
<tr>
<th>Action Item</th>
<th>Assigned</th>
</tr>
</thead>
</table>
| 16. Notifications: See Tab A to Appendix 3 for notification procedures and telephone numbers. The DSHS/RCP must be contacted for radiological accidents. They can provide assistance as needed. See paragraph V.B.6, this annex.
• Advise the responsible party to report release to state and federal authorities as required by state and federal statutes and regulations.
• If the AHJ is responsible for the release, it must make required notifications to state and federal agencies.
• If the responsible party cannot be identified/located, the AHJ should make required notifications, making it clear that the responsible party is presently unknown. | |
| 17. If water or wastewater systems are threatened by radioactive contamination, advise system operators so they may implement preventative measures. | |
| 18. If on-scene technical assistance is required, request assistance from industry or appropriate state or federal agencies. | |
| 19. If additional response resources are required, request them.
• Invoke mutual aid agreements.
• Summon HAZMAT response contractor, if one is under contract.
• Request assistance from the State through the Disaster District. | |
| 20. Provide updated information on the incident to the public through media releases. | |
| 21. Continuously document actions taken, resources committed, and expenses incurred. | |
| 21. Retain message files, logs, and incident-related documents for use in incident investigation and legal proceedings and to support claims for possible reimbursement from the responsible party or state and federal agencies. | |
| 22. Assess contamination and determine which areas are safe to re-enter. Determine and implement remediation measures for other areas. | |
| 23. As evacuated areas are determined to be safe to reenter, advise evacuees and special facilities they may return, providing traffic control as needed. | |
| 24. Curtail shelter and mass care operations as evacuees depart. | |
| 25. If some areas will require long-term cleanup before they are habitable, develop and implement procedures to mark and control access to such areas. NOTE: Cleanup is the responsibility of the responsible party. | |
| 26. If some areas will require long-term cleanup before they are habitable, develop and implement procedures to mark and control access to such areas. NOTE: Cleanup is the responsibility of the responsible party. | |
| 27. Assist evacuees who cannot return to their homes in finding temporary housing and obtaining social services. | |

Incident Classification.

Level I – Incident. An incident is a situation that is limited in scope and potential effects; involves a limited area and/or limited population; evacuation or sheltering in place is typically limited to the immediate area of the incident; and warning and public instructions are conducted in the immediate area, not community-wide. This situation can normally be handled by one or
two local response agencies or departments acting under an Incident Commander (IC), and may require limited external assistance from other local response agencies or contractors.

Level II – Emergency. An emergency is a situation that is larger in scope and more severe in terms of actual or potential effects than an incident. It does or could involve a large area, significant population, or critical facilities; require implementation of large-scale evacuation or sheltering in place and implementation of temporary shelter and mass care operations; and require community-wide warning and public instructions. You may require a sizable multi-agency response operating under an IC; and some external assistance from other local response agencies, contractors, and limited assistance from state and federal agencies.

Level III – Disaster. A disaster involves the occurrence or threat of significant casualties and/or widespread property damage that is beyond the capability of the local government to handle with its organic resources. It involves a large area, a sizable population, and/or critical resources; may require implementation of large-scale evacuation or sheltering in place and implementation of temporary shelter and mass care operations and requires a community-wide warning and public instructions. This situation requires significant external assistance from other local response agencies, contractors, and extensive state or federal assistance.
HAZARDOUS MATERIALS INCIDENT REPORT

INITIAL CONTACT INFORMATION

Check one: _____ This is an ACTUAL EMERGENCY _____ This is a DRILL/EXERCISE

1. Date/Time of Notification: ___________________ Report received by: ___________________

2. Reported by (name & phone number or radio call sign): ______________________________________

3. Company/agency and position (if applicable): __

4. Incident address/descriptive location: ___

5. Agencies at the scene: ..

6. Known damage/casualties (do not provide names over unsecured communications): __________

CHEMICAL INFORMATION

7. Nature of emergency: (check all that apply)
 ☐ Leak ☐ Explosion ☐ Spill ☐ Fire ☐ Derailment ☐ Other
 Description: ..

8. Name of material(s) released/placard number(s): ___

9. Release of materials: __________ has ended ____ is continuing Estimated release rate & duration:

10. Estimated amount of material, which has been released: __________________________________

11. Estimated amount of material, which may be released: _____________________________________

12. Media into which the release occurred: __________ air __________ ground __________ water

13. Plume characteristics:
 a. Direction (Compass direction of plume): ___
 b. Height of plume: ___
 c. Color: __________
 d. Odor: __________

14. Characteristics of material (color, smell, liquid, gaseous, solid, etc.):

15. Present status of material (solid, liquid, gas): ___

16. Apparently responsible party or parties: ___

ENVIRONMENTAL CONDITIONS

17. Current weather conditions at incident site:
 Wind From: _______ Wind Speed (mph): _______ Temperature (F): _______
 Humidity (%): _______ Precipitation: _______ Visibility: _______

18. Forecast: ..

19. Terrain conditions: ..

Ver. 4.0
03/06

D-3-A-1
<table>
<thead>
<tr>
<th>HAZARD INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(From ERG Guidebook, MSDS, CHEMTREC, or facility)</td>
</tr>
</tbody>
</table>

20. Potential hazards: ____________________________
21. Potential health effects: ____________________________
22. Safety recommendations: ____________________________
 Recommended evacuation distance: ____________________________

<table>
<thead>
<tr>
<th>IMPACT DATA</th>
</tr>
</thead>
</table>

23. Estimated areas/ populations at risk: ____________________________
24. Special facilities at risk: ____________________________
25. Other facilities with Hazmat in area of incident: ____________________________

<table>
<thead>
<tr>
<th>PROTECTIVE ACTION DECISIONS</th>
</tr>
</thead>
</table>

26. Tools used for formulating protective actions:
 a. Recommendations by facility operator/responsible party
 b. Emergency Response Guidebook
 c. Material Safety Data Sheet
 d. Recommendations by CHEMTREC
 e. Results of incident modeling (CAMEO or similar software)
 f. Other: ____________________________

27. Protective action recommendations:
 Evacuation __ Shelter-In-Place __ Combination __ No Action __ Other: ____________________________
 Time __ Actions Implemented: ____________________________

28. Evacuation Routes Recommended: ____________________________

<table>
<thead>
<tr>
<th>EXTERNAL NOTIFICATIONS</th>
</tr>
</thead>
</table>

29. Notification made to:
 National Response Center (Federal Spill Reporting) 800-424-8802
 Texas Environmental Hotline (State Spill Reporting) 800-832-8224
 CHEMTREC (Hazardous Materials Information) 800-424-9300
 TCEQ (Most Hazmat spills, except as indicated below) 800-832-8224
 RRC (Oil/gas spills - production facilities, intrastate pipelines) 844-773-0305
 DSHS/RCP (Radiological incidents) (24 Hours) 512-458-7460
 GLO (Petroleum spills in coastal waters or tributaries) 800-832-8224
 Disaster District [Location: Bryan] 979-776-3102
 TDEM State Operations Center (SOC) Austin (24 Hrs) 512-424-2277

30. Other Information: ____________________________

Ver. 4.0
03/06
D-3-A-2
1. The designated Radiological Officer (RO) is responsible for coordinating the procedures in this appendix.

2. The purpose of this appendix is to provide guidelines and procedures for maintaining an adequate number of personnel trained to deal with radiological accidents and to maintain radiation detection instruments in operational condition.

 a. Personnel training.

 1) Departments/agencies will have individuals trained as radiological officers.

 2) DSHS Community Preparedness Section provides training for Radiological Officers and radiological monitors. Courses available include:

 a) Fundamentals Course for Radiological Monitors – 8 hours
 b) Advanced Course for Radiological Monitors – 32 hours

 Additional training is also available from the Federal Emergency Management Agency (FEMA) in the form of independent study or residential training.

 3) Personnel trained in radiological protection and decontamination techniques should receive the FEMA-approved refresher training at least every three (3) years

 4) The Fire Departments shall have at least one individual trained in radiological response and on the use of radiation detection instruments on each shift.

 b. Radiation detection instruments

 1) Inspections, maintenance, and repair of radiation detection instruments will be completed according to the owner's manual for those devices owned by [County/City].

 2) Instruments on loan from the State will be inspected, maintained, and repaired according to instructions from the DSHS Community Preparedness Section.

 3) Instruments sets used to respond to a possible radioactive material accident should be located in vehicles or 24-hour dispatch offices, such as fire stations, law enforcement, or emergency medical service facilities.

 4) All other radiation detection/measuring instruments, not maintained in 24-hour facilities, should be secured in a dry (low humidity) location.